PlumX Metrics
Embed PlumX Metrics

Muon beamtest results of high-density glass scintillator tiles

Journal of Instrumentation, ISSN: 1748-0221, Vol: 19, Issue: 5
2024
  • 1
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1

Article Description

To achieve the physics goal of precisely measure the Higgs, Z, W bosons and the top quark, future electron-positron colliders require that their detector system has excellent jet energy resolution. One feasible technical option is the high granular calorimetery based on the particle flow algorithm (PFA). A new high-granularity hadronic calorimeter with glass scintillator tiles (GSHCAL) has been proposed, which focus on the significant improvement of hadronic energy resolution with a notable increase of the energy sampling fraction by using high-density glass scintillator tiles. The minimum ionizing particle (MIP) response of a glass scintillator tile is crucial to the hadronic calorimeter, so a dedicated beamtest setup was developed for testing the first batch of large-size glass scintillators. The maximum MIP response of the first batch of glass scintillator tiles can reach up to 107 p.e./MIP, which essentially meets the design requirements of the CEPC GSHCAL. An optical simulation model of a single glass scintillator tile has been established, and the simulation results are consistent with the beamtest results.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know