PlumX Metrics
Embed PlumX Metrics

Theoretical investigation of quantum capacitance in the functionalized MoS2-monolayer

Electronic Structure, ISSN: 2516-1075, Vol: 3, Issue: 2
2021
  • 12
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    12
    • Citation Indexes
      12
  • Captures
    12

Article Description

In this work, we investigated the electronic structure and the quantum capacitance of a set of functionalized MoS2 monolayers. The functionalizations have been done by using different ad-atom adsorption on MoS2 monolayer. Density functional theory calculations are performed to obtain an accurate electronic structure of ad-atom doped MoS2 monolayer with a varying degree of doping concentration. Subsequently, the quantum capacitance in each functionalized system was estimated. A marked quantum capacitance above 200 μF cm-2 has been observed. Our calculations show that the quantum capacitance of MoS2 monolayer is significantly enhanced with substitutional doping of Mo with transition metal ad-atoms. The microscopic origin of such enhancement in quantum capacitance in this system has been analyzed. Our DFT-based calculation reveals that the generation of new electronic states at the proximity of the band-edge and the shift of Fermi level caused by the ad-atom adsorption results in a very high quantum capacitance in the system.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know