The karyopherin Kap95 regulates nuclear pore complex assembly into intact nuclear envelopes in vivo
Molecular Biology of the Cell, ISSN: 1059-1524, Vol: 18, Issue: 3, Page: 886-896
2007
- 42Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations42
- Citation Indexes42
- 42
- CrossRef38
- Captures49
- Readers49
- 49
Article Description
Nuclear pore complex (NPC) assembly in interphase cells requires that new NPCs insert into an intact nuclear envelope (NE). Our previous work identified the Ran GTPase as an essential component in this process. We proposed that Ran is required for targeting assembly factors to the cytoplasmic NE face via a novel, vesicular intermediate. Although the molecular target was not identified, Ran is known to function by modulating protein interactions for karyopherin (Kap) β family members. Here we characterize loss-of-function Saccharomyces cerevisiae mutants in KAP95 with blocks in NPC assembly. Similar to defects in Ran cycle mutants, nuclear pore proteins are no longer localized properly to the NE in kap95 mutants. Also like Ran cycle mutants, the kap95-E126K mutant displayed enhanced lethality with nic96 and nup170 mutants. Thus, Kap95 and Ran are likely functioning at the same stage in assembly. However, although Ran cycle mutants accumulate small cytoplasmic vesicles, cells depleted of Kap95 accumulated long stretches of cytoplasmic membranes and had highly distorted NEs. We conclude that Kap95 serves as a key regulator of NPC assembly into intact NEs. Furthermore, both Kap95 and Ran may provide spatial cues necessary for targeting of vesicular intermediates in de novo NPC assembly. © 2007 by The American Society for Cell Biology.
Bibliographic Details
American Society for Cell Biology (ASCB)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know