PKSPS: A novel method for predicting kinase of specific phosphorylation sites based on maximum weighted bipartite matching algorithm and phosphorylation sequence enrichment analysis
Briefings in Bioinformatics, ISSN: 1477-4054, Vol: 23, Issue: 1
2022
- 4Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef2
- Captures3
- Readers3
Article Description
With the development of biotechnology, a large number of phosphorylation sites have been experimentally confirmed and collected, but only a few of them have kinase annotations. Since experimental methods to detect kinases at specific phosphorylation sites are expensive and accidental, some computational methods have been proposed to predict the kinase of these sites, but most methods only consider single sequence information or single functional network information. In this study, a new method Predicting Kinase of Specific Phosphorylation Sites (PKSPS) is developed to predict kinases of specific phosphorylation sites in human proteins by combining PKSPS-Net with PKSPS-Seq, which considers protein-protein interaction (PPI) network information and sequence information. For PKSPS-Net, kinase-kinase and substrate-substrate similarity are quantified based on the topological similarity of proteins in the PPI network, and maximum weighted bipartite matching algorithm is proposed to predict kinase-substrate relationship. In PKSPS-Seq, phosphorylation sequence enrichment analysis is used to analyze the similarity of local sequences around phosphorylation sites and predict the kinase of specific phosphorylation sites (KSP). PKSPS has been proved to be more effective than the PKSPS-Net or PKSPS-Seq on different sets of kinases. Further comparison results show that the PKSPS method performs better than existing methods. Finally, the case study demonstrates the effectiveness of the PKSPS in predicting kinases of specific phosphorylation sites. The open source code and data of the PKSPS can be obtained from https://github.com/guoxinyunncu/PKSPS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123813592&origin=inward; http://dx.doi.org/10.1093/bib/bbab436; http://www.ncbi.nlm.nih.gov/pubmed/34661630; https://academic.oup.com/bib/article/doi/10.1093/bib/bbab436/6398688; https://dx.doi.org/10.1093/bib/bbab436; https://academic.oup.com/bib/article/23/1/bbab436/6398688
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know