Persistent spectral simplicial complex-based machine learning for chromosomal structural analysis in cellular differentiation
Briefings in Bioinformatics, ISSN: 1477-4054, Vol: 23, Issue: 4
2022
- 8Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- Captures9
- Readers9
Article Description
The three-dimensional (3D) chromosomal structure plays an essential role in all DNA-templated processes, including gene transcription, DNA replication and other cellular processes. Although developing chromosome conformation capture (3C) methods, such as Hi-C, which can generate chromosomal contact data characterized genome-wide chromosomal structural properties, understanding 3D genomic nature-based on Hi-C data remains lacking. Here, we propose a persistent spectral simplicial complex (PerSpectSC) model to describe Hi-C data for the first time. Specifically, a filtration process is introduced to generate a series of nested simplicial complexes at different scales. For each of these simplicial complexes, its spectral information can be calculated from the corresponding Hodge Laplacian matrix. PerSpectSC model describes the persistence and variation of the spectral information of the nested simplicial complexes during the filtration process. Different from all previous models, our PerSpectSC-based features provide a quantitative global-scale characterization of chromosome structures and topology. Our descriptors can successfully classify cell types and also cellular differentiation stages for all the 24 types of chromosomes simultaneously. In particular, persistent minimum best characterizes cell types and Dim (1) persistent multiplicity best characterizes cellular differentiation. These results demonstrate the great potential of our PerSpectSC-based models in polymeric data analysis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134721465&origin=inward; http://dx.doi.org/10.1093/bib/bbac168; http://www.ncbi.nlm.nih.gov/pubmed/35536545; https://academic.oup.com/bib/article/doi/10.1093/bib/bbac168/6583209; https://dx.doi.org/10.1093/bib/bbac168; https://academic.oup.com/bib/article/23/4/bbac168/6583209
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know