Comprehensive comparative analysis of methods and software for identifying viral integrations
Briefings in Bioinformatics, ISSN: 1477-4054, Vol: 20, Issue: 6, Page: 2088-2097
2019
- 20Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations20
- Citation Indexes20
- 20
- CrossRef3
- Captures33
- Readers33
- 33
Review Description
Many viruses are capable of integrating in the human genome, particularly viruses involved in tumorigenesis. Viral integrations can be considered genetic markers for discovering virus-caused cancers and inferring cancer cell development. Next-generation sequencing (NGS) technologies have been widely used to screen for viral integrations in cancer genomes, and a number of bioinformatics tools have been developed to detect viral integrations using NGS data. However, there has been no systematic comparison of the methods or software. In this study, we performed a comprehensive comparative analysis of the designs, performance, functionality and limitations among the existing methods and software for detecting viral integrations. We further compared the sensitivity, precision and runtime of integration detection of four representative tools. Our analyses showed that each of the existing software had its own merits; however, none of them were sufficient for parallel or accurate virome-wide detection. After carefully evaluating the limitations shared by the existing methods, we proposed strategies and directions for developing virome-wide integration detection.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know