Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks
Briefings in Bioinformatics, ISSN: 1477-4054, Vol: 21, Issue: 6, Page: 2084-2098
2020
- 3Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures16
- Readers16
- 16
Article Description
Although intensive efforts have been devoted to investigating latent tuberculosis (LTB) and active tuberculosis (PTB) infections, the similarities and differences in the host responses to these two closely associated stages remain elusive, probably due to the difficulty in identifying informative genes related to LTB using traditional methods. Herein, we developed a framework known as the consistently differential expression network to identify tuberculosis (TB)-related gene pairs by combining microarray profiles and protein-protein interactions. We thus obtained 774 and 693 pairs corresponding to the PTB and LTB stages, respectively. The PTB-specific genes showed higher expression values and fold-changes than the LTB-specific genes. Furthermore, the PTB-related pairs generally had higher expression correlations and would be more activated compared to their LTB-related counterparts. The module analysis implied that the detected gene pairs tended to cluster in the topological and functional modules. Functional analysis indicated that the LTB- and PTB-specific genes were enriched in different pathways and had remarkably different locations in the NF-κB signaling pathway. Finally, we showed that the identified genes and gene pairs had the potential to distinguish TB patients in different disease stages and could be considered as drug targets for the specific treatment of patients with LTB or PTB.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know