A novel method for data fusion over entity-relation graphs and its application to protein-protein interaction prediction
Bioinformatics, ISSN: 1460-2059, Vol: 37, Issue: 16, Page: 2275-2281
2021
- 13Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef8
- Captures18
- Readers18
- 18
Article Description
Motivation: Modern bioinformatics is facing increasingly complex problems to solve, and we are indeed rapidly approaching an era in which the ability to seamlessly integrate heterogeneous sources of information will be crucial for the scientific progress. Here, we present a novel non-linear data fusion framework that generalizes the conventional matrix factorization paradigm allowing inference over arbitrary entity-relation graphs, and we applied it to the prediction of protein-protein interactions (PPIs). Improving our knowledge of PPI networks at the proteome scale is indeed crucial to understand protein function, physiological and disease states and cell life in general. Results: We devised three data fusion-based models for the proteome-level prediction of PPIs, and we show that our method outperforms state of the art approaches on common benchmarks. Moreover, we investigate its predictions on newly published PPIs, showing that this new data has a clear shift in its underlying distributions and we thus train and test our models on this extended dataset.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118445687&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btab092; http://www.ncbi.nlm.nih.gov/pubmed/33560405; https://academic.oup.com/bioinformatics/article/37/16/2275/6131674; https://dx.doi.org/10.1093/bioinformatics/btab092
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know