PlumX Metrics
Embed PlumX Metrics

A novel method for data fusion over entity-relation graphs and its application to protein-protein interaction prediction

Bioinformatics, ISSN: 1460-2059, Vol: 37, Issue: 16, Page: 2275-2281
2021
  • 13
    Citations
  • 0
    Usage
  • 18
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Motivation: Modern bioinformatics is facing increasingly complex problems to solve, and we are indeed rapidly approaching an era in which the ability to seamlessly integrate heterogeneous sources of information will be crucial for the scientific progress. Here, we present a novel non-linear data fusion framework that generalizes the conventional matrix factorization paradigm allowing inference over arbitrary entity-relation graphs, and we applied it to the prediction of protein-protein interactions (PPIs). Improving our knowledge of PPI networks at the proteome scale is indeed crucial to understand protein function, physiological and disease states and cell life in general. Results: We devised three data fusion-based models for the proteome-level prediction of PPIs, and we show that our method outperforms state of the art approaches on common benchmarks. Moreover, we investigate its predictions on newly published PPIs, showing that this new data has a clear shift in its underlying distributions and we thus train and test our models on this extended dataset.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know