PolarProtPred: Predicting apical and basolateral localization of transmembrane proteins using putative short linear motifs and deep learning
Bioinformatics, ISSN: 1460-2059, Vol: 37, Issue: 23, Page: 4328-4335
2021
- 1Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures19
- Readers19
- 19
Article Description
Motivation: Cell polarity refers to the asymmetric organization of cellular components in various cells. Epithelial cells are the best-known examples of polarized cells, featuring apical and basolateral membrane domains. Mounting evidence suggests that short linear motifs play a major role in protein trafficking to these domains, although the exact rules governing them are still elusive. Results: In this study we prepared neural networks that capture recurrent patterns to classify transmembrane proteins localizing into apical and basolateral membranes. Asymmetric expression of drug transporters results in vectorial drug transport, governing the pharmacokinetics of numerous substances, yet the data on how proteins are sorted in epithelial cells is very scattered. The provided method may offer help to experimentalists to identify or better characterize molecular networks regulating the distribution of transporters or surface receptors (including viral entry receptors like that of COVID-19).
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122175512&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btab480; http://www.ncbi.nlm.nih.gov/pubmed/34185052; https://academic.oup.com/bioinformatics/article/37/23/4328/6311263; https://dx.doi.org/10.1093/bioinformatics/btab480
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know