MultiGran-SMILES: multi-granularity SMILES learning for molecular property prediction
Bioinformatics, ISSN: 1367-4811, Vol: 38, Issue: 19, Page: 4573-4580
2022
- 21Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef13
- Captures21
- Readers21
- 21
Article Description
Motivation: Extracting useful molecular features is essential for molecular property prediction. Atom-level representation is a common representation of molecules, ignoring the sub-structure or branch information of molecules to some extent; however, it is vice versa for the substring-level representation. Both atom-level and substring-level representations may lose the neighborhood or spatial information of molecules. While molecular graph representation aggregating the neighborhood information of a molecule has a weak ability in expressing the chiral molecules or symmetrical structure. In this article, we aim to make use of the advantages of representations in different granularities simultaneously for molecular property prediction. To this end, we propose a fusion model named MultiGran-SMILES, which integrates the molecular features of atoms, sub-structures and graphs from the input. Compared with the single granularity representation of molecules, our method leverages the advantages of various granularity representations simultaneously and adjusts the contribution of each type of representation adaptively for molecular property prediction. Results: The experimental results show that our MultiGran-SMILES method achieves state-of-the-art performance on BBBP, LogP, HIV and ClinTox datasets. For the BACE, FDA and Tox21 datasets, the results are comparable with the state-of-the-art models. Moreover, the experimental results show that the gains of our proposed method are bigger for the molecules with obvious functional groups or branches.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140249691&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btac550; http://www.ncbi.nlm.nih.gov/pubmed/35961025; https://academic.oup.com/bioinformatics/article/38/19/4573/6663988; https://dx.doi.org/10.1093/bioinformatics/btac550
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know