Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
Bioinformatics, ISSN: 1367-4811, Vol: 39, Issue: 39 Suppl 1, Page: I318-I325
2023
- 26Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- 26
- Captures43
- Readers43
- 43
Article Description
Motivation: Millions of protein sequences have been generated by numerous genome and transcriptome sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to develop computational methods to accurately predict protein function to fill the gap. Even though many methods have been developed to use protein sequences as input to predict function, much fewer methods leverage protein structures in protein function prediction because there was lack of accurate protein structures for most proteins until recently. Results: We developed TransFun - a method using a transformer-based protein language model and 3D-equivariant graph neural networks to distill information from both protein sequences and structures to predict protein function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM) via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant graph neural networks. Benchmarked on the CAFA3 test dataset and a new test dataset, TransFun outperforms several state-of-the-art methods, indicating that the language model and 3D-equivariant graph neural networks are effective methods to leverage protein sequences and structures to improve protein function prediction. Combining TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85164234344&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btad208; http://www.ncbi.nlm.nih.gov/pubmed/37387145; https://academic.oup.com/bioinformatics/article/39/Supplement_1/i318/7210446; https://dx.doi.org/10.1093/bioinformatics/btad208
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know