MetDecode: methylation-based deconvolution of cell-free DNA for noninvasive multi-cancer typing
Bioinformatics, ISSN: 1367-4811, Vol: 40, Issue: 9
2024
- 2Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Motivation: Circulating-cell free DNA (cfDNA) is widely explored as a noninvasive biomarker for cancer screening and diagnosis. The ability to decode the cells of origin in cfDNA would provide biological insights into pathophysiological mechanisms, aiding in cancer characterization and directing clinical management and follow-up. Results: We developed a DNA methylation signature-based deconvolution algorithm, MetDecode, for cancer tissue origin identification. We built a reference atlas exploiting de novo and published whole-genome methylation sequencing data for colorectal, breast, ovarian, and cervical cancer, and blood-cell-derived entities. MetDecode models the contributors absent in the atlas with methylation patterns learnt on-the-fly from the input cfDNA methylation profiles. In addition, our model accounts for the coverage of each marker region to alleviate potential sources of noise. In-silico experiments showed a limit of detection down to 2.88% of tumor tissue contribution in cfDNA. MetDecode produced Pearson correlation coefficients above 0.95 and outperformed other methods in simulations (P < 0.001; T-test; one-sided). In plasma cfDNA profiles from cancer patients, MetDecode assigned the correct tissue-of-origin in 84.2% of cases. In conclusion, MetDecode can unravel alterations in the cfDNA pool components by accurately estimating the contribution of multiple tissues, while supplied with an imperfect reference atlas.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203474791&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btae522; http://www.ncbi.nlm.nih.gov/pubmed/39177091; https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btae522/7739698; https://dx.doi.org/10.1093/bioinformatics/btae522; https://academic.oup.com/bioinformatics/article/40/9/btae522/7739698
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know