GATHER: A systems approach to interpreting genomic signatures
Bioinformatics, ISSN: 1367-4811, Vol: 22, Issue: 23, Page: 2926-2933
2006
- 278Citations
- 132Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations278
- Citation Indexes278
- 278
- CrossRef265
- Captures132
- Readers132
- 132
Article Description
Motivation: Understanding the full meaning of the biology captured in molecular profiles, within the context of the entire biological system, cannot be achieved with a simple examination of the individual genes in the signature. To facilitate such an understanding, we have developed GATHER, a tool that integrates various forms of available data to elucidate biological context within molecular signatures produced from high-throughput post-genomic assays. Results: Analyzing the Rb/E2F tumor suppressor pathway, we show that GATHER identifies critical features of the pathway. We further show that GATHER identifies common biology in a series of otherwise unrelated gene expression signatures that each predict breast cancer outcome. We quantify the performance of GATHER and find that it successfully predicts 90% of the functions over a broad range of gene groups. We believe that GATHER provides an essential tool for extracting the full value from molecular signatures generated from genome-scale analyses. © Copyright 2006 Oxford University Press.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know