Computational prediction of host-pathogen protein-protein interactions
Bioinformatics, ISSN: 1367-4811, Vol: 23, Issue: 13, Page: i159-66
2007
- 151Citations
- 219Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations151
- Citation Indexes151
- 151
- CrossRef133
- Captures219
- Readers219
- 219
Conference Paper Description
Motivation: Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. Results: We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. © 2007 The Author(s).
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know