Anatomy of a hash-based long read sequence mapping algorithm for next generation DNA sequencing
Bioinformatics, ISSN: 1367-4803, Vol: 27, Issue: 2, Page: 189-195
2011
- 21Citations
- 141Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- CrossRef21
- 21
- Captures141
- Readers141
- 140
Article Description
Motivation: Recently, a number of programs have been proposed for mapping short reads to a reference genome. Many of them are heavily optimized for short-read mapping and hence are very efficient for shorter queries, but that makes them inefficient or not applicable for reads longer than 200 bp. However, many sequencers are already generating longer reads and more are expected to follow. For long read sequence mapping, there are limited options; BLAT, SSAHA2, FANGS and BWA-SW are among the popular ones. However, resequencing and personalized medicine need much faster software to map these long sequencing reads to a reference genome to identify SNPs or rare transcripts. Results: We present AGILE (AliGnIng Long rEads), a hash table based high-throughput sequence mapping algorithm for longer 454 reads that uses diagonal multiple seed-match criteria, customized q-gram filtering and a dynamic incremental search approach among other heuristics to optimize every step of the mapping process. In our experiments, we observe that AGILE is more accurate than BLAT, and comparable to BWA-SW and SSAHA2. For practical error rates (<5%) and read lengths (200-1000 bp), AGILE is significantly faster than BLAT, SSAHA2 and BWA-SW. Even for the other cases, AGILE is comparable to BWA-SW and several times faster than BLAT and SSAHA2. © The Author 2010. Published by Oxford University Press. All rights reserved.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know