Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development
Bioinformatics, ISSN: 1460-2059, Vol: 31, Issue: 7, Page: 1060-1066
2015
- 38Citations
- 113Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- CrossRef38
- 35
- Captures113
- Readers113
- 113
Article Description
Motivation: Transcriptional regulatory networks controlling cell fate decisions in mammalian embryonic development remain elusive despite a long time of research. The recent emergence of single-cell RNA profiling technology raises hope for new discovery. Although experimental works have obtained intriguing insights into the mouse early development, a holistic and systematic view is still missing. Mathematical models of cell fates tend to be concept-based, not designed to learn from real data. To elucidate the regulatory mechanisms behind cell fate decisions, it is highly desirable to synthesize the data-driven and knowledge-driven modeling approaches. Results: We propose a novel method that integrates the structure of a cell lineage tree with transcriptional patterns from single-cell data. This method adopts probabilistic Boolean network (PBN) for network modeling, and genetic algorithm as search strategy. Guided by the 'directionality' of cell development along branches of the cell lineage tree, our method is able to accurately infer the regulatory circuits from single-cell gene expression data, in a holistic way. Applied on the single-cell transcriptional data of mouse preimplantation development, our algorithm outperforms conventional methods of network inference. Given the network topology, our method can also identify the operational interactions in the gene regulatory network (GRN), corresponding to specific cell fate determination. This is one of the first attempts to infer GRNs from single-cell transcriptional data, incorporating dynamics of cell development along a cell lineage tree.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know