@MInter: Automated text-mining of microbial interactions
Bioinformatics, ISSN: 1460-2059, Vol: 32, Issue: 19, Page: 2981-2987
2016
- 30Citations
- 66Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations30
- Citation Indexes29
- CrossRef29
- 28
- Patent Family Citations1
- Patent Families1
- Captures66
- Readers66
- 66
Article Description
Motivation: Microbial consortia are frequently defined by numerous interactions within the community that are key to understanding their function. While microbial interactions have been extensively studied experimentally, information regarding them is dispersed in the scientific literature. As manual collation is an infeasible option, automated data processing tools are needed to make this information easily accessible. Results: We present @MInter, an automated information extraction system based on Support Vector Machines to analyze paper abstracts and infer microbial interactions. @MInter was trained and tested on a manually curated gold standard dataset of 735 species interactions and 3917 annotated abstracts, constructed as part of this study. Cross-validation analysis showed that @MInter was able to detect abstracts pertaining to one or more microbial interactions with high specificity (specificity = 95%, AUC = 0.97). Despite challenges in identifying specific microbial interactions in an abstract (interaction level recall = 95%, precision = 25%), @MInter was shown to reduce annotator workload 13-fold compared to alternate approaches. Applying @MInter to 175 bacterial species abundant on human skin, we identified a network of 357 literature-reported microbial interactions, demonstrating its utility for the study of microbial communities. Availability and implementation: @MInter is freely available at https://github.com/CSB5/atminter.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84990913005&origin=inward; http://dx.doi.org/10.1093/bioinformatics/btw357; http://www.ncbi.nlm.nih.gov/pubmed/27312413; https://academic.oup.com/bioinformatics/article/32/19/2981/2196520; https://dx.doi.org/10.1093/bioinformatics/btw357
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know