Bayesian learning of network structures from interventional experimental data
Biometrika, ISSN: 1464-3510, Vol: 111, Issue: 1, Page: 195-214
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Directed acyclic graphs provide an effective framework for learning causal relationships among variables given multivariate observations. Under pure observational data, directed acyclic graphs encoding the same conditional independencies cannot be distinguished and are collected into Markov equivalence classes. In many contexts, however, observational measurements are supplemented by interventional data that improve directed acyclic graph identifiability and enhance causal effect estimation. We propose a Bayesian framework for multivariate data partially generated after stochastic interventions. To this end, we introduce an effective prior elicitation procedure leading to a closed-form expression for the directed acyclic graph marginal likelihood and guaranteeing score equivalence among directed acyclic graphs that are Markov equivalent post intervention. Under the Gaussian setting, we show, in terms of posterior ratio consistency, that the true network will be asymptotically recovered, regardless of the specific distribution of the intervened variables and of the relative asymptotic dominance between observational and interventional measurements. We validate our theoretical results via simulation and we implement a Markov chain Monte Carlo sampler for posterior inference on the space of directed acyclic graphs on both synthetic and biological protein expression data.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184901372&origin=inward; http://dx.doi.org/10.1093/biomet/asad032; https://academic.oup.com/biomet/article/111/1/195/7160044; https://dx.doi.org/10.1093/biomet/asad032; https://academic.oup.com/biomet/article-abstract/111/1/195/7160044?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know