On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments
Biometrika, ISSN: 0006-3444, Vol: 101, Issue: 1, Page: 237-244
2014
- 11Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef1
- Captures26
- Readers26
- 26
Article Description
We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least-squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard's dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We furthermore show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the estimator of the effect of a randomized treatment. We conclude that, in view of its robustness against model misspecification, Aalen least-squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and the primary reasons to consider baseline covariate adjustment in such settings could be interest in subgroup effects or the need to adjust for informative censoring or baseline imbalances. Our results also shed light on the robustness of Aalen least-squares estimators against model misspecification in observational studies. © 2013 Biometrika Trust.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84897745953&origin=inward; http://dx.doi.org/10.1093/biomet/ast045; http://www.ncbi.nlm.nih.gov/pubmed/28669998; https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/ast045; https://dx.doi.org/10.1093/biomet/ast045; https://academic.oup.com/biomet/article-abstract/101/1/237/2365471?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know