Multivariate mapping of low-resilient neurocognitive systems within and around low-grade gliomas
Brain, ISSN: 1460-2156, Vol: 147, Issue: 8, Page: 2718-2731
2024
- 4Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- CrossRef1
- Captures21
- Readers21
- 21
Article Description
Accumulating evidence suggests that the brain exhibits a remarkable capacity for functional compensation in response to neurological damage, a resilience potential that is deeply rooted in the malleable features of its underlying anatomofunctional architecture. This propensity is particularly exemplified by diffuse low-grade glioma, a subtype of primary brain tumour. However, functional plasticity is not boundless, and surgical resections directed at structures with limited neuroplasticity can lead to incapacitating impairments. Yet, maximizing diffuse low-grade glioma resections offers substantial oncological benefits, especially when the resection extends beyond the tumour margins (i.e. supra-tumour or supratotal resection). In this context, the primary objective of this study was to identify which cerebral structures were associated with less favourable cognitive outcomes after surgery, while accounting for intra-tumour and supra-tumour features of the surgical resections. To achieve this objective, we leveraged a unique cohort of 400 patients with diffuse low-grade glioma who underwent surgery with awake cognitive mapping. Patients benefitted from a neuropsychological assessment consisting of 18 subtests administered before and 3 months after surgery. We analysed changes in performance and applied topography-focused and disconnection-focused multivariate lesion–symptom mapping using support vector regressions, in an attempt to capture resected cortico-subcortical structures less amenable to full cognitive compensation. The observed changes in performance were of a limited magnitude, suggesting an overall recovery (13 of 18 tasks recovered fully despite a mean resection extent of 92.4%). Nevertheless, lesion–symptom mapping analyses revealed that a lack of recovery in picture naming was linked to damage in the left inferior temporal gyrus and inferior longitudinal fasciculus. Likewise, for semantic fluency abilities, an association was established with damage to the left precuneus/posterior cingulate. For phonological fluency abilities, the left dorsomedial frontal cortex and the frontal aslant tract were implicated. Moreover, difficulties in spatial exploration were associated with injury to the right dorsomedial prefrontal cortex and its underlying connectivity. An exploratory analysis suggested that supra-tumour resections were associated with a less pronounced recovery following specific resection patterns, such as supra-tumour resections of the left uncinate fasciculus (picture naming), the left corticostriatal tract and the anterior corpus callosum (phonological fluency), the hippocampus and parahippocampus (episodic memory) and the right frontal–mesial areas (visuospatial exploration). Collectively, these patterns of results shed new light on both low-resilient neural systems and the prediction of cognitive recovery following glioma surgery. Furthermore, they indicate that supra-tumour resections were only occasionally less well tolerated from a cognitive viewpoint. In doing so, they have deep implications for surgical planning and rehabilitation strategies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85195480678&origin=inward; http://dx.doi.org/10.1093/brain/awae130; http://www.ncbi.nlm.nih.gov/pubmed/38657204; https://academic.oup.com/brain/article/147/8/2718/7657747; https://dx.doi.org/10.1093/brain/awae130; https://academic.oup.com/brain/article-abstract/147/8/2718/7657747?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know