Chronic neuronal activation leads to elevated lactate dehydrogenase A through the AMP-activated protein kinase/hypoxia-inducible factor-1α hypoxia pathway
Brain Communications, ISSN: 2632-1297, Vol: 5, Issue: 1, Page: fcac298
2023
- 4Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures8
- Readers8
Article Description
Recent studies suggest that changes in neuronal metabolism are associated with epilepsy. High rates of ATP depletion, lactate dehydrogenase A and lactate production have all been found in epilepsy patients, animal and tissue culture models. As such, it can be hypothesized that chronic seizures lead to continuing elevations in neuronal energy demand which may lead to an adapted metabolic response and elevations of lactate dehydrogenase A. In this study, we examine elevations in the lactate dehydrogenase A protein as a long-term cellular adaptation to elevated metabolic demand from chronic neuronal activation. We investigate this cellular adaptation in human tissue samples and explore the mechanisms of lactate dehydrogenase A upregulation using cultured neurones treated with low Mg2+, a manipulation that leads to NMDA-mediated neuronal activation. We demonstrate that human epileptic tissue preferentially upregulates neuronal lactate dehydrogenase A, and that in neuronal cultures chronic and repeated elevations in neural activity lead to upregulation of neuronal lactate dehydrogenase A. Similar to states of hypoxia, this metabolic change occurs through the AMP-activated protein kinase/hypoxia-inducible factor-1α pathway. Our data therefore reveal a novel long-term bioenergetic adaptation that occurs in chronically activated neurones and provide a basis for understanding the interplay between metabolism and neural activity during epilepsy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85153866329&origin=inward; http://dx.doi.org/10.1093/braincomms/fcac298; http://www.ncbi.nlm.nih.gov/pubmed/36655171; https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcac298/6855285; https://dx.doi.org/10.1093/braincomms/fcac298; https://academic.oup.com/braincomms/article/5/1/fcac298/6855285
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know