Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer’s disease
Brain Communications, ISSN: 2632-1297, Vol: 6, Issue: 2, Page: fcae101
2024
- 2Citations
- 29Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures29
- Readers29
- 29
- Mentions1
- News Mentions1
- News1
Most Recent News
Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer's disease.
Brain Commun. 2024;6(2):fcae101. Epub 2024 Mar 28 Authors: McDiarmid AH, Gospodinova KO, Elliott RJ, Dawson JC, Graham RE, El-Daher MT, Anderson SM, Glen SC, Glerup S, Carragher NO, Evans KL PubMed: 38576795 Submit Comment
Article Description
Alzheimer’s disease accounts for 60–70% of dementia cases. Current treatments are inadequate and there is a need to develop new approaches to drug discovery. Recently, in cancer, morphological profiling has been used in combination with high-throughput screening of small-molecule libraries in human cells in vitro. To test feasibility of this approach for Alzheimer’s disease, we developed a cell morphology-based drug screen centred on the risk gene, SORL1 (which encodes the protein SORLA). Increased Alzheimer’s disease risk has been repeatedly linked to variants in SORL1, particularly those conferring loss or decreased expression of SORLA, and lower SORL1 levels are observed in post-mortem brain samples from individuals with Alzheimer’s disease. Consistent with its role in the endolysosomal pathway, SORL1 deletion is associated with enlarged endosomes in neural progenitor cells and neurons. We, therefore, hypothesized that multi-parametric, image-based cell phenotyping would identify features characteristic of SORL1 deletion. An automated morphological profiling method (Cell Painting) was adapted to neural progenitor cells and used to determine the phenotypic response of SORL1 neural progenitor cells to treatment with compounds from a small internationally approved drug library (TargetMol, 330 compounds). We detected distinct phenotypic signatures for SORL1 neural progenitor cells compared to isogenic wild-type controls. Furthermore, we identified 16 compounds (representing 14 drugs) that reversed the mutant morphological signatures in neural progenitor cells derived from three SORL1 induced pluripotent stem cell sub-clones. Network pharmacology analysis revealed the 16 compounds belonged to five mechanistic groups: 20S proteasome, aldehyde dehydrogenase, topoisomerase I and II, and DNA synthesis inhibitors. Enrichment analysis identified DNA synthesis/damage/repair, proteases/proteasome and metabolism as key pathways/biological processes. Prediction of novel targets revealed enrichment in pathways associated with neural cell function and Alzheimer’s disease. Overall, this work suggests that (i) a quantitative phenotypic metric can distinguish induced pluripotent stem cell-derived SORL1 neural progenitor cells from isogenic wild-type controls and (ii) phenotypic screening combined with multi-parametric high-content image analysis is a viable option for drug repurposing and discovery in this human neural cell model of Alzheimer’s disease.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189698085&origin=inward; http://dx.doi.org/10.1093/braincomms/fcae101; http://www.ncbi.nlm.nih.gov/pubmed/38576795; https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcae101/7636571; https://dx.doi.org/10.1093/braincomms/fcae101; https://academic.oup.com/braincomms/article/6/2/fcae101/7636571
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know