Integrated vaccine screening system: Using cellular functional capacity in vitro to assess genuine vaccine protectiveness in ruminants
Pathogens and Disease, ISSN: 2049-632X, Vol: 76, Issue: 3
2018
- 5Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Experimental trials in the natural host are essential for development and screening of effective vaccines. For chronic diseases of livestock such as paratuberculosis, these can be lengthy and costly in nature. An alternative is to screen vaccines in vitro; however, previous studies have found that vaccine success in vitro in existing screening assays does not translate to in vivo efficacy. To overcome these issues, we have developed a system that combines both in vivo and in vitro aspects. We hypothesise that the effectiveness of vaccine-induced immune responses mounted in vivo could be gauged by assessing the ability of immune cells to 'control' an in vitro infection. Monocytes from Merino wethers (n = 45) were infected with Mycobacterium avium subspecies paratuberculosis (MAP) in vitro, cultured with autologous lymphocytes and remaining viable intracellular MAP was quantified. Cells from MAP exposed sheep had a higher capacity to kill intracellular MAP compared to non-exposed controls (P = 0.002). Importantly, cells from MAP exposed uninfected sheep had a greater capacity to kill intracellular MAP compared to vaccinated animals that were infected (ineffective vaccination), indicating that this in vitro assay has the potential to gauge actual protectiveness, or lack thereof, of a vaccine.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85050626969&origin=inward; http://dx.doi.org/10.1093/femspd/fty029; http://www.ncbi.nlm.nih.gov/pubmed/29718267; https://academic.oup.com/femspd/advance-article/doi/10.1093/femspd/fty029/4953755; https://dx.doi.org/10.1093/femspd/fty029; https://academic.oup.com/femspd/article/76/3/fty029/4953755
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know