Shannon entropy as a metric for conditional gene expression in Neurospora crassa
G3: Genes, Genomes, Genetics, ISSN: 2160-1836, Vol: 11, Issue: 4
2021
- 3Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef1
- Captures23
- Readers23
- 23
Article Description
Neurospora crassa has been an important model organism for molecular biology and genetics for over 60 years. Neurospora crassa has a complex life cycle, with over 28 distinct cell types and is capable of transcriptional responses to many environmental conditions including nutrient availability, temperature, and light. To quantify variation in N. crassa gene expression, we analyzed public expression data from 97 conditions and calculated the Shannon Entropy value for Neurospora's approximately 11,000 genes. Entropy values can be used to estimate the variability in expression for a single gene over a range of conditions and be used to classify individual genes as constitutive or condition-specific. Shannon entropy has previously been used measure the degree of tissue specificity of multicellular plant or animal genes. We use this metric here to measure variable gene expression in a microbe and provide this information as a resource for the N. crassa research community. Finally, we demonstrate the utility of this approach by using entropy values to identify genes with constitutive expression across a wide range of conditions and to identify genes that are activated exclusively during sexual development.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85104900439&origin=inward; http://dx.doi.org/10.1093/g3journal/jkab055; http://www.ncbi.nlm.nih.gov/pubmed/33751112; https://academic.oup.com/g3journal/article/doi/10.1093/g3journal/jkab055/6159613; https://dx.doi.org/10.1093/g3journal/jkab055; https://academic.oup.com/g3journal/article/11/4/jkab055/6159613
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know