Probability of fixation of an advantageous mutant in a viral quasispecies
Genetics, ISSN: 0016-6731, Vol: 163, Issue: 2, Page: 467-474
2003
- 41Citations
- 54Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations41
- Citation Indexes41
- 41
- CrossRef25
- Captures54
- Readers54
- 54
Article Description
The probability that an advantageous mutant rises to fixation in a viral quasispecies is investigated in the framework of multitype branching processes. Whether fixation is possible depends on the overall growth rate of the quasispecies that will form if invasion is successful rather than on the individual fitness of the invading mutant. The exact fixation probability can be calculated only if the fitnesses of all potential members of the invading quasispecies are known. Quasispecies fixation has two important characteristics: First, a sequence with negative selection coefficient has a positive fixation probability as long as it has the potential to grow into a quasispecies with an overall growth rate that exceeds that of the established quasispecies. Second, the fixation probabilities of sequences with identical fitnesses can nevertheless vary over many orders of magnitudes. Two approximations for the probability of fixation are introduced. Both approximations require only partial knowledge about the potential members of the invading quasispecies. The performance of these two approximations is compared to the exact fixation probability on a network of RNA sequences with identical secondary structure.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know