A systematic analysis of protein-carbohydrate interactions in the Protein Data Bank
Glycobiology, ISSN: 1460-2423, Vol: 31, Issue: 2, Page: 126-136
2021
- 15Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef3
- Captures35
- Readers35
- 35
Article Description
Protein-carbohydrate interactions underlie essential biological processes. Elucidating the mechanism of protein-carbohydrate recognition is a prerequisite for modeling and optimizing protein-carbohydrate interactions, which will help in discovery of carbohydrate-derived therapeutics. In this work, we present a survey of a curated database consisting of 6,402 protein-carbohydrate complexes in the Protein Data Bank (PDB). We performed an all-against-all comparison of a subset of nonredundant binding sites, and the result indicates that the interaction pattern similarity is not completely relevant to the binding site structural similarity. Investigation of both binding site and ligand promiscuities reveals that the geometry of chemical feature points is more important than local backbone structure in determining protein-carbohydrate interactions. A further analysis on the frequency and geometry of atomic interactions shows that carbohydrate functional groups are not equally involved in binding interactions. Finally, we discuss the usefulness of protein-carbohydrate complexes in the PDB with acknowledgement that the carbohydrates in many structures are incomplete.
Bibliographic Details
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know