Interactions that define the arrangement of sugar-binding sites in BDCA-2 and dectin-2 dimers
Glycobiology, ISSN: 1460-2423, Vol: 34, Issue: 12
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
The sugar-binding receptors dectin-2 and blood dendritic cell antigen 2 (BDCA-2) bind oligosaccharide ligands through extracellular carbohydrate-recognition domains (CRDs) and initiate intracellular signaling through Fc receptor γ adapters (FcRγ ). Dectin-2 stimulates macrophages in response to pathogen binding while BDCA-2 modulates cytokine production in plasmacytoid dendritic cells. The oligomeric states of these receptors and the orientations of their CRDs have been investigated by analysis of a naturally occurring disulfide-bonded variant of BDCA-2 and by replacement of transmembrane domains with N-terminal dimerization domains to create extracellular domain dimers of both dectin-2 and BDCA-2. Analysis of these constructs, as well as previously described crystal structures of the CRDs from these proteins and a novel structure of an extended version of the extracellular domain of dectin-2, showed that there is only limited interaction of the CRDs in the dimers, but interactions can be stabilized by the presence of the neck region. The resulting orientation of sugar-binding sites in the dimers would favor crosslinking of multiple dimers by oligosaccharide ligands, causing clustering of FcRγ to initiate signaling.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85211991878&origin=inward; http://dx.doi.org/10.1093/glycob/cwae082; http://www.ncbi.nlm.nih.gov/pubmed/39361900; https://academic.oup.com/glycob/article/doi/10.1093/glycob/cwae082/7810225; https://dx.doi.org/10.1093/glycob/cwae082; https://academic.oup.com/glycob/advance-article/doi/10.1093/glycob/cwae082/7810225
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know