Efficient purging of deleterious mutations contributes to the survival of a rare conifer
Horticulture Research, ISSN: 2052-7276, Vol: 11, Issue: 6, Page: uhae108
2024
- 1Citations
- 5Captures
- 8Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Against the odds: The genetic secrets of a rare conifer’s climate change defiance
In a remarkable twist of evolutionary adaptation, the rare Tibetan cypress, Cupressus gigantea, has shown unexpected genetic resilience. Despite facing the brink of extinction due
Article Description
Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, Chamaecyparis, Juniperus, and Thuja, yet genomic surveys are lacking for this family. Cupressus gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past climate change has shaped the population evolution of this species, we generated a de novo chromosome-scale genome (10.92 Gb) and compared the species' population history and genetic load with that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline of population sizes during the first part of the Quaternary. However, populations of C. duclouxiana then started to recover, while C. gigantea populations continued to decrease until recently. The total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, and simulations and statistical tests support purifying selection during prolonged inbreeding as the explanation. Our results highlight the evolutionary consequences of decreased population size on the genetic burden of a long-lived endangered conifer with large genome size and suggest that genetic purging deserves more attention in conservation management.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85196271947&origin=inward; http://dx.doi.org/10.1093/hr/uhae108; http://www.ncbi.nlm.nih.gov/pubmed/38883334; https://academic.oup.com/hr/article/doi/10.1093/hr/uhae108/7644300; https://dx.doi.org/10.1093/hr/uhae108; https://academic.oup.com/hr/article/11/6/uhae108/7644300
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know