A method to automatically detect fish aggregations using horizontally scanning sonar
ICES Journal of Marine Science, ISSN: 1095-9289, Vol: 75, Issue: 5, Page: 1803-1812
2018
- 12Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pelagic fishes are a major source of protein and unsaturated fatty acids, and robust management is critical to avoid overfishing. Fisheries management is often supported by indices from scientific acoustic-trawl surveys, where vertically aligned echo sounders and trawl samples are used to provide an estimate of abundance. Survey biases may be introduced when fish are located near the sea surface or if they avoid the survey vessel. Horizontally scanning acoustic equipment, such as fish-detection sonars, have been proposed as a method to quantify such biases; however, manual interpretation of the data hamper further development. An automated method for identifying fish aggregations within large volumes of sonar data has been developed. It exploits the fact that near-stationary targets, i.e. a fish school, have distinct patterns through the data. The algorithm is not instrument specific, and was tested on data collected from several acoustic-trawl surveys in the Norwegian Sea. The automatic algorithm had a similar performance to manual interpretation, and the main cause of discrepancies was aggregations overlooked in the manual work. These discrepancies were substantially reduced in a second round of manual interpretation. We envision that this method will facilitate a labour efficient and more objective analysis of sonar data and provide information to support fisheries management for pelagic fish.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85054650385&origin=inward; http://dx.doi.org/10.1093/icesjms/fsy029; https://academic.oup.com/icesjms/article/75/5/1803/4984479; http://academic.oup.com/icesjms/article-pdf/75/5/1803/31236692/fsy029.pdf; https://dx.doi.org/10.1093/icesjms/fsy029
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know