Accurate estimation of fish length in single camera photogrammetry with a fiducial marker
ICES Journal of Marine Science, ISSN: 1095-9289, Vol: 77, Issue: 6, Page: 2245-2254
2020
- 16Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Videogrammetry and photogrammetry are increasingly being used in marine science for unsupervised data collection. The camera systems employed are complex, in contrast to "consumer"digital cameras and smartphones carried by potential citizen scientists. However, using consumer cameras in photogrammetry will introduce unknown length estimation errors through both the image acquisition process and lens distortion. This study presents a methodology to achieve accurate 2-dimensional (2-D) total length (TL) estimates of fish without specialist equipment or proprietary software. Photographs of fish were captured with an action camera using a background fiducial marker, a foreground fiducial marker and a laser marker. The geometric properties of the lens were modelled with OpenCV to correct image distortion. TL estimates were corrected for parallax effects using an algorithm requiring only the initial length estimate and known fish morphometric relationships. Correcting image distortion decreased RMSE by 96% and the percentage mean bias error (%MBE) by 50%. Correcting for parallax effects achieved a %MBE of -0.6%. This study demonstrates that the morphometric measurement of different species can be accurately estimated without the need for complex camera equipment, making it particularly suitable for deployment in citizen science and other volunteer-based data collection endeavours.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85081604401&origin=inward; http://dx.doi.org/10.1093/icesjms/fsz030; https://academic.oup.com/icesjms/article/77/6/2245/5380578; http://academic.oup.com/icesjms/article-pdf/77/6/2245/38496874/fsz030.pdf; https://dx.doi.org/10.1093/icesjms/fsz030
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know