Distributed information-theoretic clustering
Information and Inference, ISSN: 2049-8772, Vol: 11, Issue: 1, Page: 137-166
2022
- 1Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We study a novel multi-terminal source coding setup motivated by the biclustering problem. Two separate encoders observe two i.i.d. sequences $X^n$ and $Y^n$, respectively. The goal is to find rate-limited encodings $f(x^n)$ and $g(z^n)$ that maximize the mutual information $\textrm{I}(\,{f(X^n)};{g(Y^n)})/n$. We discuss connections of this problem with hypothesis testing against independence, pattern recognition and the information bottleneck method. Improving previous cardinality bounds for the inner and outer bounds allows us to thoroughly study the special case of a binary symmetric source and to quantify the gap between the inner and the outer bound in this special case. Furthermore, we investigate a multiple description (MD) extension of the CEO problem with mutual information constraint. Surprisingly, this MD-CEO problem permits a tight single-letter characterization of the achievable region.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know