Isolation and characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p phospholipid flippase
Journal of Biochemistry, ISSN: 1756-2651, Vol: 149, Issue: 4, Page: 423-432
2011
- 21Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- CrossRef21
- 20
- Captures22
- Readers22
- 22
Article Description
Flippases (type 4 P-type ATPases) are believed to translocate phospholipids from the exoplasmic to the cytoplasmic leaflet in bilayer membranes. Since flippases are structurally similar to ion-transporting P-type ATPases such as the Ca ATPase, one important question is how flippases have evolved to transport phospholipids instead of ions. We previously showed that a conserved membrane protein, Cdc50p, is required for the endoplasmic reticulum exit of the Drs2p flippase in yeast. However, Cdc50p is still associated with Drs2p after its transport to the endosomal/trans-Golgi network (TGN) membranes, and its function in the complex with Drs2p is unknown. In this study, we isolated novel temperature-sensitive (ts) cdc50 mutants whose products were still localized to endosomal/TGN compartments at the non-permissive temperature. Mutant Cdc50 proteins colocalized with Drs2p in endosomal/TGN compartments, and they co-immunoprecipitated with Drs2p. These cdc50-ts mutants exhibited defects in vesicle transport from early endosomes to the TGN as the cdc50 deletion mutant did. These results suggest that mutant Cdc50 proteins could be complexed with Drs2p, but the resulting Cdc50p-Drs2p complex is functionally defective at the non-permissive temperature. Cdc50p may play an important role for phospholipid translocation by Drs2p. © 2011 The Authors.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79953221826&origin=inward; http://dx.doi.org/10.1093/jb/mvq155; http://www.ncbi.nlm.nih.gov/pubmed/21212072; https://academic.oup.com/jb/article-lookup/doi/10.1093/jb/mvq155; https://dx.doi.org/10.1093/jb/mvq155; https://academic.oup.com/jb/article-abstract/149/4/423/967334?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know