Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy
Microscopy, ISSN: 2050-5701, Vol: 69, Issue: 6, Page: 340-349
2020
- 4Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures20
- Readers20
- 20
Review Description
In-liquid frequency modulation atomic force microscopy (FM-AFM) has been used for visualizing subnanometer-scale surface structures of minerals, organic thin films and biological systems. In addition, three-dimensional atomic force microscopy (3D-AFM) has been developed by combining it with a three-dimensional (3D) tip scanning method. This method enabled the visualization of 3D distributions of water (i.e. hydration structures) and flexible molecular chains at subnanometer-scale resolution. While these applications highlighted the unique capabilities of FM-AFM, its force resolution, speed and stability are not necessarily at a satisfactory level for practical applications. Recently, there have been significant advancements in these fundamental performances. The force resolution was dramatically improved by using a small cantilever, which enabled the imaging of a 3D hydration structure even in pure water and made it possible to directly compare experimental results with simulated ones. In addition, the improved force resolution allowed the enhancement of imaging speed without compromising spatial resolution. To achieve this goal, efforts have been made for improving bandwidth, resonance frequency and/or latency of various components, including a high-speed phase-locked loop (PLL) circuit. With these improvements, now atomic-resolution in-liquid FM-AFM imaging can be performed at ∼1 s/frame. Furthermore, a Si-coating method was found to improve stability and reproducibility of atomic-resolution imaging owing to formation of a stable hydration structure on a tip apex. These improvements have opened up new possibilities of atomic-scale studies on solid-liquid interfacial phenomena by in-liquid FM-AFM.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099433496&origin=inward; http://dx.doi.org/10.1093/jmicro/dfaa045; http://www.ncbi.nlm.nih.gov/pubmed/32780817; https://academic.oup.com/jmicro/article/69/6/340/5890373; https://dx.doi.org/10.1093/jmicro/dfaa045; https://academic.oup.com/jmicro/article-abstract/69/6/340/5890373?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know