PlumX Metrics
Embed PlumX Metrics

A mechanical model for magnetized relativistic blastwaves

Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 507, Issue: 2, Page: 1788-1794
2021
  • 7
    Citations
  • 87
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The evolution of a relativistic blastwave is usually delineated under the assumption of pressure balance between forward- and reverse-shocked regions. However, such a treatment usually violates the energy conservation law, and is inconsistent with existing magnetohydrodynamic numerical simulation results. A mechanical model of non-magnetized blastwaves was proposed in previous work to solve the problem. In this paper, we generalize the mechanical model to the case of a blastwave driven by an ejecta with an arbitrary magnetization parameter $\sigma_{\rm ej}$. We test our modified mechanical model by considering a long-lasting magnetized ejecta and found that it is much better than the pressure-balance treatment in terms of energy conservation. For a constant central engine wind luminosity $L_{\rm ej} = 10^{47} {\rm erg ~ s^{-1}}$ and $\sigma_{\rm ej}<10$, the deviation from energy conservation is negligibly small at small radii but only reaches less than $25{{\ \rm per\ cent}}$ even at 1019 cm from the central engine. For a finite lifetime of the central engine, the reverse shock crosses the magnetized ejecta earlier for the ejecta with a higher $\sigma_{\rm ej}$, which is consistent with previous analytical and numerical results. In general, the mechanical model is more precise than the traditional analytical models with results closer to those of numerical simulations.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know