The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 515, Issue: 4, Page: 4722-4752
2022
- 12Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Using the weak gravitational lensing data from the Hyper Suprime-Cam Subaru Strategic Program (HSC survey), we study the potential of different stellar mass estimates in tracing halo mass. We consider galaxies with log10(M∗/M⊙) > 11.5 at 0.2 < z < 0.5 with carefully measured light profiles, and clusters from the redMaPPer and CAMIRA richness-based algorithms. We devise a method (the 'Top-N test') to evaluate the scatter in the halo mass-observable relation for different tracers, and to inter-compare halo mass proxies in four number density bins using stacked galaxy-galaxy lensing profiles. This test reveals three key findings. Stellar masses based on CModel photometry and aperture luminosity within R <30 kpc are poor proxies of halo mass. In contrast, the stellar mass of the outer envelope is an excellent halo mass proxy. The stellar mass within R = [50, 100] kpc, M∗, [50, 100], has performance comparable to the state-of-the-art richness-based cluster finders at log10Mvir ⪎ 14.0 and could be a better halo mass tracer at lower halo masses. Finally, using N-body simulations, we find that the lensing profiles of massive haloes selected by M∗, [50, 100] are consistent with the expectation for a sample without projection or mis-centring effects. Richness-selected clusters, on the other hand, display an excess at R ∼1 Mpc in their lensing profiles, which may suggest a more significant impact from selection biases. These results suggest that M∗-based tracers have distinct advantages in identifying massive haloes, which could open up new avenues for cluster cosmology. The codes and data used in this work can be found here:
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know