PlumX Metrics
Embed PlumX Metrics

The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects

Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 515, Issue: 4, Page: 4722-4752
2022
  • 12
    Citations
  • 0
    Usage
  • 16
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    12
    • Citation Indexes
      12
  • Captures
    16

Article Description

Using the weak gravitational lensing data from the Hyper Suprime-Cam Subaru Strategic Program (HSC survey), we study the potential of different stellar mass estimates in tracing halo mass. We consider galaxies with log10(M∗/M⊙) > 11.5 at 0.2 < z < 0.5 with carefully measured light profiles, and clusters from the redMaPPer and CAMIRA richness-based algorithms. We devise a method (the 'Top-N test') to evaluate the scatter in the halo mass-observable relation for different tracers, and to inter-compare halo mass proxies in four number density bins using stacked galaxy-galaxy lensing profiles. This test reveals three key findings. Stellar masses based on CModel photometry and aperture luminosity within R <30 kpc are poor proxies of halo mass. In contrast, the stellar mass of the outer envelope is an excellent halo mass proxy. The stellar mass within R = [50, 100] kpc, M∗, [50, 100], has performance comparable to the state-of-the-art richness-based cluster finders at log10Mvir ⪎ 14.0 and could be a better halo mass tracer at lower halo masses. Finally, using N-body simulations, we find that the lensing profiles of massive haloes selected by M∗, [50, 100] are consistent with the expectation for a sample without projection or mis-centring effects. Richness-selected clusters, on the other hand, display an excess at R ∼1 Mpc in their lensing profiles, which may suggest a more significant impact from selection biases. These results suggest that M∗-based tracers have distinct advantages in identifying massive haloes, which could open up new avenues for cluster cosmology. The codes and data used in this work can be found here:

Bibliographic Details

Song Huang(黄崧); Alexie Leauthaud; Christopher Bradshaw; Andrew Hearin; Peter Behroozi; Johannes Lange; Jenny Greene; Joseph DeRose; Joshua S Speagle(沈佳士); Enia Xhakaj

Oxford University Press (OUP)

Physics and Astronomy; Earth and Planetary Sciences

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know