Large-scale gas flows and streaming motions in simulated spiral galaxies
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 512, Issue: 1, Page: 1111-1126
2022
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
From a galactic perspective, star formation occurs on the smallest scales within molecular clouds, but it is likely initiated from the large-scale flows driven by galactic dynamics. To understand the conditions for star formation, it is important to first discern the mechanisms that drive gas from large scales into dense structures on the smallest scales of a galaxy. We present high-resolution smoothed particle hydrodynamics simulations of two model spiral galaxies: one with a live stellar disc (N-body) and one with a spiral potential. We investigate the large-scale flows and streaming motions driven by the simulated spiral structure. We find that the strength of the motions in the radial direction tends to be higher than in the azimuthal component. In the N-body model, the amplitude of these motions decreases with galactocentric radius whereas for the spiral potential, it decreases to a minimum at the corotation radius, and increases again after this point. The results show that in both simulations, the arms induce local shocks, an increase in kinetic energy that can drive turbulence and a means of compressing and expanding the gas. These are all crucial elements in forming molecular clouds and driving the necessary conditions for star formation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know