Distinguishing between photoionized and collisionally ionized gas in the circumgalactic medium
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 519, Issue: 1, Page: 1-12
2023
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Most studies of highly ionized plasmas have historically assumed that ions are either in photoionization equilibrium (PIE) or in collisional ionization equilibrium (CIE), sometimes including multiple phases with different relevant mechanisms. Simulation analysis packages, on the other hand, tend to use pre-computed ion fraction tables that include both mechanisms, among others. Focusing on the low-density, high-temperature phase space likely to be most relevant in the circumgalactic medium, in this work we show that most ions can be classified as 'PI' or 'CI' on an ion-by-ion basis. This means that for a cloud at a particular point in phase space, some ions will be created primarily by PI and others by CI, with other mechanisms playing only very minor roles. Specifically, we show that ions are generally CI if the thermal energy per particle is greater than ∼6 per cent of their ionization energy, and PI otherwise. We analyse the accuracy of this ansatz compared to usual PIE/CIE calculations, and show the surprisingly minor dependence of this conclusion on redshift and ionizing background.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know