Eigenvectors of solar magnetic field in cycles 21-24 and their links to solar activity indices
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 512, Issue: 4, Page: 5085-5099
2022
- 9Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Using full disc synoptic maps of solar background magnetic field captured from the Wilcox Solar Observatory for 30 latitudinal bands for cycles 21-24, principal components (PCs) or eigenvectors of magnetic oscillations are obtained. The PCs are shown to come in pairs assigned to magnetic waves produced by dipole, quadruple, sextuple, and octuple magnetic sources. The first pair is linked to dipole magnetic waves with their summary curve revealing a reasonable fit to the averaged sunspot numbers in cycles 21-24. This verifies the previous results and confirms the summary curve as additional proxy of solar activity decreasing towards grand solar minimum in cycles 25-27. There is also a noticeable asymmetry in latitudinal distributions of these PCs showing an increased activity in Northern hemisphere in odd cycles and in Southern hemisphere in even ones similar to the N-S asymmetries observed in sunspots. The second pair of PCs linked to quadruple magnetic sources has 50 per cent smaller amplitudes than the first, while their summary curve correlates closely with soft X-ray fluxes in solar flares. Flare occurrences are also linked to variations of the next two pairs of eigenvectors, quadruple and sextuple components, revealing additional periodicity of about 2.75-3.1 yr similar to observed oscillations in flares. Strong latitudinal asymmetries in quadruple and sextuple components are correlating with the N-S asymmetries of flare occurrences skewed to Southern hemisphere in even cycles and to Northern hemisphere in odd ones. Principal component analysis of solar magnetic field raises perspectives for simultaneous prediction of general and flaring solar activity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know