Instabilities in dusty non-isothermal protoplanetary discs
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 522, Issue: 4, Page: 5892-5930
2023
- 6Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Protoplanetary discs (PPDs) can host a number of instabilities that may partake directly or indirectly in the process of planetesimal formation. These include the vertical shear instability (VSI), convective overstability (COS), streaming instability (SI), and dust settling instability (DSI), to name a few. Notably, the VSI and COS have mostly been studied in purely gaseous discs, while the SI and DSI have only been analysed in isothermal discs. How these instabilities operate under more general conditions is therefore unclear. To this end, we devise a local model of a PPD describing a non-isothermal gas interacting with a single species of dust via drag forces. Using this, we find that dust drag sets minimum length-scales below which the VSI and COS are suppressed. Similarly, we find that the SI can be suppressed on sufficiently small scales by the gas' radial buoyancy if it cools on roughly a dynamical time-scale. We show that the DSI can be effectively stabilized by vertical buoyancy, except at special radial and vertical length-scales. We also find novel instabilities unique to a dusty, non-isothermal gas. These result in a dusty analogue of the COS that operates in slowly cooled discs, and a dusty version of the VSI that is strongly enhanced by dust settling. We briefly discuss the possible implications of our results on planetesimal formation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know