Star formation properties of z ∼ 1 galaxy clusters and groups from Horizon Run 5
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 532, Issue: 4, Page: 3778-3785
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Quiescent galaxies are predominantly observed in local galaxy clusters. However, the fraction of quiescent galaxies in high-redshift clusters significantly varies among different clusters. In this study, we present the results of an analysis of the star formation (SF) properties of z ∼ 0.87 clusters and groups from a cosmological hydrodynamical simulation Horizon Run 5. We investigate the correlation between the quiescent galaxy fraction (QF) of these model clusters/groups and their various internal or external properties. We find that halo mass is one of the most important characteristics as higher mass clusters and groups have higher QFs. We also find that other properties such as stellar-mass ratio and Friends-of-Friends fraction, which measures the proportion of the area around a cluster occupied by dense structures, may mildly affect the QFs of clusters and groups. This may indicate that the evolutionary history as well as the large-scale environment of clusters and groups also play a certain role in determining the SF status of high-redshift galaxy clusters and groups.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know