The MAGPI survey: Evidence against the bulge-halo conspiracy
Monthly Notices of the Royal Astronomical Society, ISSN: 1365-2966, Vol: 533, Issue: 2, Page: 1300-1320
2024
- 1Citations
- 7Captures
- 28Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
A galactic conspiracy disproven
Stars and dark matter are not interacting in ‘impossible ways’ A longstanding ‘conspiracy’ in astronomy – that stars and dark matter are interacting in inexplicable ways – has been overturned by an international team of astronomers, in a paper today in Monthly Notices of the Royal Astronomical Society (MNRAS). The authors are based in Australia, the UK, Austria, and Germany, and used the Very Lar
Most Recent News
MNRAS: the "conspiracy" of dark and baryonic matter has been refuted
An international team of astronomers has discovered that dark matter and stars do not interact as previously thought. The results of the study, published in
Article Description
Studies of the internal mass structure of galaxies have observed a 'conspiracy' between the dark matter and stellar components, with total (starsdark) density profiles showing remarkable regularity and low intrinsic scatter across various samples of galaxies at different redshifts. Such homogeneity suggests the dark and stellar components must somehow compensate for each other in order to produce such regular mass structures. We test the conspiracy using a sample of 22 galaxies from the 'Middle Ages Galaxy Properties with Integral field spectroscopy' Survey that targets massive galaxies at. We use resolved, 2D stellar kinematics with the Schwarzschild orbit-based modelling technique to recover intrinsic mass structures, shapes, and dark matter fractions. This work is the first implementation of the Schwarzschild modelling method on a sample of galaxies at a cosmologically significant redshift. We find that the variability of structure for combined mass (baryonic and dark) density profiles is greater than that of the stellar components alone. Furthermore, we find no significant correlation between enclosed dark matter fractions at the half-light radius and the stellar mass density structure. Rather, the total density profile slope,, strongly correlates with the dark matter fraction within the half-light radius, as. Our results refute the bulge-halo conspiracy and suggest that stochastic processes dominate in the assembly of structure for massive galaxies.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know