Pulsar wind nebulae of runaway massive stars
Monthly Notices of the Royal Astronomical Society: Letters, ISSN: 1745-3933, Vol: 515, Issue: 1, Page: L29-L33
2022
- 7Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A significant fraction of massive stars move at speed through the interstellar medium of galaxies. After their death as core-collapse supernovae, a possible final evolutionary state is that of a fast-rotating magnetized neutron star, shaping its circumstellar medium into a pulsar wind nebula. Understanding the properties of pulsar wind nebulae requires knowledge of the evolutionary history of their massive progenitors. Using two-dimensional magnetohydrodynamical simulations, we demonstrate that, in the context of a runaway high-mass red-supergiant supernova progenitor, the morphology of its subsequent pulsar wind nebula is strongly affected by the wind of the defunct progenitor star pre-shaping the stellar surroundings throughout its entire past life. In particular, pulsar wind nebulae of obscured runaway massive stars harbour asymmetries as a function of the morphology of the progenitor's wind-blown cavity, inducing projected asymmetric up-down synchrotron emission.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know