PlumX Metrics
Embed PlumX Metrics

Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene

Nucleic Acids Research, ISSN: 0305-1048, Vol: 37, Issue: 22, Page: 7416-7428
2009
  • 43
    Citations
  • 0
    Usage
  • 57
    Captures
  • 3
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    43
  • Captures
    57
  • Mentions
    3
    • References
      2
      • Wikipedia
        2
    • News Mentions
      1
      • News
        1

Most Recent News

Setting up and maintaining differential insulators and boundaries for genomic imprinting

Introduction The genome fits within the spatial constraints of the cell nucleusby winding the DNA around nucleosomes (primary 10 nm structure) thatcan fold to form

Article Description

In mammals, the dosage compensation of sex chromosomes between males and females is achieved by transcriptional inactivation of one of the two X chromosomes in females. However, a number of genes escape X-inactivation in humans. It remains poorly understood how the transcriptional activity of these 'escape genes' is maintained despite the chromosome-wide heterochromatin formation. To address this question, we analyzed a putative chromatin boundary between the inactivated RBM10 and an escape gene, UBA1/UBE1. Chromatin immunoprecipitation revealed that trimethylated histone H3 lysine 9 and H4 lysine 20 were enriched in the last exon through the proximal downstream region of RBM10, but were remarkably diminished at ~2 kb upstream of the UBA1 transcription start site. Whereas RNA polymerase II was not loaded onto the intergenic region, CTCF (CCCTC binding factor) was enriched around the boundary, where some CpG sites were hypomethylated specifically on inactive X. These findings suggest that local DNA hypomethylation and CTCF binding are involved in the formation of a chromatin boundary, which protects the UBA1 escape gene against the chromosome-wide transcriptional silencing. © The Author(s) 2009. Published by Oxford University Press.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know