Subtle gene modification in mouse ES cells: Evidence for incorporation of unmodified oligonucleotides without induction of DNA damage
Nucleic Acids Research, ISSN: 0305-1048, Vol: 38, Issue: 20, Page: 6956-6967
2010
- 27Citations
- 61Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes27
- 27
- CrossRef24
- Captures61
- Readers61
- 61
Article Description
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ssODNs. The slower appearance of green fluorescent cells with sense ssODNs as compared to anti-sense ssODNs is consistent with physical incorporation of the ssODN into the genome. Thus, the supremacy of anti-sense ssODNs, previously reported by others, may be an artefact of early readout of the EGFP reporter. Importantly, gene correction by unmodified ssODNs only mildly affected the viability of targeted cells and did not induce genomic DNA double-stranded breaks (DSBs). In contrast, ssODNs that were end-protected by phosphorothioate (PTO) linkages caused increased H2AX phosphorylation and impaired cell cycle progression in both corrected and non-corrected cells due to induction of genomic DSBs. Our results demonstrate that the use of unmodified rather than PTO end-protected ssODNs allows stable gene modification without compromising the genomic integrity of the cell, which is crucial for application of ssODN-mediated gene targeting in (embryonic) stem cells. © The Author(s) 2010.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78651275193&origin=inward; http://dx.doi.org/10.1093/nar/gkq589; http://www.ncbi.nlm.nih.gov/pubmed/20601408; https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkq589; https://dx.doi.org/10.1093/nar/gkq589; https://academic.oup.com/nar/article/38/20/6956/1310317
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know