An automatic integrative method for learning interpretable communities of biological pathways
NAR Genomics and Bioinformatics, ISSN: 2631-9268, Vol: 4, Issue: 2, Page: lqac044
2022
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- Captures4
- Readers4
Article Description
Although knowledge of biological pathways is essential for interpreting results from computational biology studies, the growing number of pathway databases complicates efforts to efficiently perform pathway analysis due to high redundancies among pathways from different databases, and inconsistencies in how pathways are created and named. We introduce the PAthway Communities (PAC) framework, which reconciles pathways from different databases and reduces pathway redundancy by revealing informative groups with distinct biological functions. Uniquely applying the Louvain community detection algorithm to a network of 4847 pathways from KEGG, REACTOME and Gene Ontology databases, we identify 35 distinct and automatically annotated communities of pathways and show that they are consistent with expert-curated pathway categories. Further, we demonstrate that our pathway community network can be queried with new gene sets to provide biological context in terms of related pathways and communities. Our approach, combined with an interpretable web tool we provide, will help computational biologists more efficiently contextualize and interpret their biological findings.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133804763&origin=inward; http://dx.doi.org/10.1093/nargab/lqac044; http://www.ncbi.nlm.nih.gov/pubmed/35769343; https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqac044/6617323; https://dx.doi.org/10.1093/nargab/lqac044; https://academic.oup.com/nargab/article/4/2/lqac044/6617323
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know