Method to observe Jupiter’s radio emissions at high resolution using multiple LOFAR stations: a first case study of the Io-decametric emission using the Irish IE613, French FR606, and German DE604 stations
RAS Techniques and Instruments, ISSN: 2752-8200, Vol: 1, Issue: 1, Page: 48-57
2022
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Low Frequency Array (LOFAR) is an international radio telescope array, consisting of 38 stations in the Netherlands and 14 international stations spread over Europe. Here, we present an observation method to study the Jovian decametric radio emissions from several LOFAR stations (here Birr Castle in Ireland, Nançay in France, and Postdam in Germany), at high temporal and spectral resolution. This method is based on prediction tools, such as radio emission simulations and probability maps, and data processing. We report an observation of Io-induced decametric emission from 2021 June, and a first case study of the substructures that compose the macroscopic emissions (called millisecond bursts). The study of these bursts makes it possible to determine the electron populations at the origin of these emissions. We then present several possible future avenues for study based on these observations. The methodology and study perspectives described in this paper can be applied to new observations of Jovian radio emissions induced by Io, but also by Ganymede or Europa, or Jovian auroral radio emissions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know