Towards an automatic approach to modelling the circumgalactic medium: new tools for mock making and fitting of metal profiles in large surveys
RAS Techniques and Instruments, ISSN: 2752-8200, Vol: 2, Issue: 1, Page: 470-491
2023
- 3Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present two new tools for studying and modelling metal absorption lines in the circumgalactic medium. The first tool, dubbed ‘NMF Profile Maker’ (NMF–PM), uses a non-negative matrix factorization (NMF) method and provides a robust means to generate large libraries of realistic metal absorption profiles. The method is trained and tested on 650 unsaturated metal absorbers in the redshift interval z = 0.9–4.2 with column densities in the range of 11.2 ≤ log (N/cm) ≤ 16.3, obtained from high-resolution (R > 4000) and high-signal-to-noise ratio (S/N ≥ 10) quasar spectroscopy. To avoid spurious features, we train on infinite S/N Voigt models of the observed line profiles derived using the code ‘Monte-Carlo Absorption Line Fitter’ (MC–ALF), a novel automatic Bayesian fitting code that is the second tool we present in this work. MC–ALF is a Monte-Carlo code based on nested sampling that, without the need for any prior guess or human intervention, can decompose metal lines into individual Voigt components. Both MC–ALF and NMF–PM are made publicly available to allow the community to produce large libraries of synthetic metal profiles and to reconstruct Voigt models of absorption lines in an automatic fashion. Both tools contribute to the scientific effort of simulating and analysing metal absorbers in very large spectroscopic surveys of quasars like the ongoing Dark Energy Spectroscopic Instrument, the 4-m Multi-Object Spectroscopic Telescope, and the WHT Enhanced Area Velocity Explorer surveys.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know