Rumbling Orchids: How to Assess Divergent Evolution between Chloroplast Endosymbionts and the Nuclear Host
Systematic Biology, ISSN: 1076-836X, Vol: 65, Issue: 1, Page: 51-65
2016
- 54Citations
- 77Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations54
- Citation Indexes54
- CrossRef54
- 53
- Captures77
- Readers77
- 77
Article Description
Phylogenetic relationships inferred from multilocus organellar and nuclear DNA data are often difficult to resolve because of evolutionary conflicts among gene trees. However, conflicting or "outlier" associations (i.e., linked pairs of "operational terminal units" in two phylogenies) among these data sets often provide valuable information on evolutionary processes such as chloroplast capture following hybridization, incomplete lineage sorting, and horizontal gene transfer. Statistical tools that to date have been used in cophylogenetic studies only also have the potential to test for the degree of topological congruence between organellar and nuclear data sets and reliably detect outlier associations. Two distance-based methods, namely ParaFit and Procrustean Approach to Cophylogeny (PACo), were used in conjunction to detect those outliers contributing to conflicting phylogenies independently derived from chloroplast and nuclear sequence data. We explored their efficiency of retrieving outlier associations, and the impact of input data (unit branch length and additive trees) between data sets, by using several simulation approaches. To test their performance using real data sets, we additionally inferred thephylogenetic relationships withinNeotropical Catasetinae (Epidendroideae,Orchidaceae), whichis a suitable group to investigate phylogenetic incongruence because of hybridization processes between some of its constituent species. A comparison between trees derived from chloroplast and nuclear sequence data reflected strong, well-supported incongruence within Catasetum, Cycnoches, and Mormodes. As a result, outliers among chloroplast and nuclear data sets, and in experimental simulations, were successfully detected by PACo when using patristic distance matrices obtained from phylograms, but not fromunit branch length trees. The performance of ParaFitwas overall inferior compared to PACo, using either phylograms or unit branch lengths as input data. Because workflows for applying cophylogenetic analyses are not standardized yet, we provide a pipeline for executing PACo and ParaFit as well as displaying outlier associations in plots and trees by using the software R. The pipeline renders a method to identify outliers with high reliability and to assess the combinability of the independently derived data sets by means of statistical analyses.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84960392159&origin=inward; http://dx.doi.org/10.1093/sysbio/syv070; http://www.ncbi.nlm.nih.gov/pubmed/26430060; https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syv070; https://dx.doi.org/10.1093/sysbio/syv070; https://academic.oup.com/sysbio/article/65/1/51/2461585
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know