Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L.
Tree Physiology, ISSN: 1758-4469, Vol: 43, Issue: 10, Page: 1718-1730
2023
- 6Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The current state of knowledge on bud dormancy is limited. However, expanding such knowledge is crucial in order to properly model forest responses and feedback to future climate. Recent studies have shown that warming can decrease chilling accumulation and increase dormancy depth, thereby inducing delayed budburst in European beech (Fagus sylvatica L). Whether fall warming can advance spring phenology is unclear. To investigate the effect of warming on endodormancy of deciduous trees, we tested the impact of mild elevated temperature (+2.5-3.5 °C; temperature, on average, kept at 10 °C) in mid and late autumn on the bud dormancy depth and spring phenology of beech. We studied saplings by inducing periods of warming in greenhouses over a 2-year period. Even though warming reduced chilling accumulation in both years, we observed that the response of dormancy depth and spring budburst were yearspecific. We found that warming during endodormancy peak could decrease the bud dormancy depth and therefore advance spring budburst. This effect appears to be modulated by factors such as the date of senescence onset and forcing intensity during endodormancy. Results from this study suggest that not only chilling but also forcing controls bud development during endodormancy and that extra forcing in autumn can offset reduced chilling.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85168280286&origin=inward; http://dx.doi.org/10.1093/treephys/tpad080; http://www.ncbi.nlm.nih.gov/pubmed/37364048; https://academic.oup.com/treephys/article/43/10/1718/7207873; https://dx.doi.org/10.1093/treephys/tpad080; https://academic.oup.com/treephys/article-abstract/43/10/1718/7207873?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know