PlumX Metrics
Embed PlumX Metrics

Long-circulating poly(ethylene glycol)-grafted gelatin nanoparticles customized for intracellular delivery of noscapine: Preparation, in-vitro characterization, structure elucidation, pharmacokinetics, and cytotoxicity analyses

Anti-Cancer Drugs, ISSN: 0959-4973, Vol: 22, Issue: 6, Page: 543-555
2011
  • 54
    Citations
  • 0
    Usage
  • 48
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Noscapine, the tubulin-binding anticancer agent, when administered orally, requires high ED50 (300-600 mg/kg), whereas intravenous administration (10 mg/kg) results in rapid elimination of the drug with a half-life of 0.39 h. Hence, the development of long-circulating injectable nanoparticles can be an interesting option for designing a viable formulation of noscapine for anticancer activity. Noscapine-enveloped gelatin nanoparticles and poly(ethylene glycol)-grafted gelatin nanoparticles were constructed and characterized. Data indicate that smooth and spherical shaped nanoparticles of 127±15 nm were engineered with maximum entrapment efficiency of 65.32±3.81%. Circular dichroism confirms that nanocoacervates retained the α-helical content of gelatin in ethanol whereas acetone favored the formation of a random coil. Moreover, the Fourier transform infrared and powder X-ray diffraction pattern prevents any significant change in the noscapine-loaded gelatin nanoparticles in comparison with individual components. In-vitro release kinetic data suggest a first-order release of noscapine (85.1%) from gelatin nanoparticles with a release rate constant of 7.611×10. It is to be noted that there is a 1.43-fold increase in the area under the curve up to the last sampling point for the noscapine-loaded poly(ethylene glycol)-grafted gelatin nanoparticles over the noscapine-loaded gelatin nanoparticles and a 13.09-fold increase over noscapine. Cytotoxicity analysis of the MCF-7 cell line indicated that the IC50 value of the noscapine-loaded poly(ethylene glycol)-grafted gelatin nanoparticles was equivalent to 20.8 μmol/l, which was significantly (P<0.05) lower than the IC50 value of the noscapine-loaded gelatin nanoparticles (26.3 μmol/l) and noscapine (40.5 μmol/l).Noscapine-loaded poly(ethylene glycol)-grafted gelatin nanoparticles can be developed as a promising therapeutic agent for the management of breast cancer. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know